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Abstract

Tropical forest condition has important implications for biodiversity, climate change and human needs. Structural features of forests can

serve as useful indicators of forest condition and have the potential to be assessed with remotely sensed imagery, which can provide

quantitative information on forest ecosystems at high temporal and spatial resolutions. Herein, we investigate the utility of remote sensing for

assessing, predicting and mapping two important forest structural features, stem density and basal area, in tropical, littoral forests in

southeastern Madagascar. We analysed the relationships of basal area and stem density measurements to the Normalised Difference

Vegetation Index (NDVI) and radiance measurements in bands 3, 4, 5 and 7 from the Landsat Enhanced Thematic Mapper Plus (ETM+).

Strong relationships were identified among all of the individual bands and field based measurements of basal area ( pb0.01) while there were

weak and insignificant relationships among spectral response and stem density measurements. NDVI was not significantly correlated with

basal area but was strongly and significantly correlated with stem density (r=�0.69, pb0.01) when using a subset of the data, which

represented extreme values. We used an artificial neural network (ANN) to predict basal area from radiance values in bands 3, 4, 5 and 7 and

to produce a predictive map of basal area for the entire forest landscape. The ANNs produced strong and significant relationships between

predicted and actual measures of basal area using a jackknife method (r=0.79, pb0.01) and when using a larger data set (r=0.82, pb0.01).

The map of predicted basal area produced by the ANN was assessed in relation to a pre-existing map of forest condition derived from a semi-

quantitative field assessment. The predictive map of basal area provided finer detail on stand structural heterogeneity, captured known

climatic influences on forest structure and displayed trends of basal area associated with degree of human accessibility. These findings

demonstrate the utility of ANNs for integrating satellite data from the Landsat ETM+ spectral bands 3, 4, 5 and 7 with limited field survey

data to assess patterns in basal area at the landscape scale.

D 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Tropical forests play crucial roles in the functioning of

our planet and the maintenance of life (Myers, 1996). They

serve as regulators of global and regional climate systems
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(Gedney & Valdes, 2000), act as carbon sinks (Grace et al.,

1995), are rich in biodiversity, containing over half of the

planet’s life forms (Wilson, 1988), provide valuable

ecosystem services, and serve as vital resources for human

populations (Laurance, 1999). Thus, monitoring the state

and condition of tropical forests can also provide indications

of the health of our planet and its inhabitants. A consid-

erable amount of research has investigated the use of

satellite imagery for measuring tropical deforestation, a

process which can be readily observed by comparing pixels

that have changed from forest to non-forest in images

collected on different dates (Green & Sussman, 1990; Skole

& Tucker, 1993). However, this crisp, binary approach is
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unable to capture and describe the great variety of processes

that reduce or alter forest cover without eliminating it

(Sgrenzaroli et al., 2002; Stone & Lefebvre, 1998). This

more subtle process of dforest degradationT refers to the

temporary or permanent decrease in the density, biomass

and/or overall structure of vegetation cover and/or its

species composition (Grainger, 1993; Sgrenzaroli et al.,

2002). Because forest degradation involves internal or

vertical change within the forest, it is more difficult to

detect with remote sensing than forest clearance. It is

important to investigate methods for monitoring these subtle

changes since forest modification is generally a more

prevalent process than deforestation (Lambin, 1999; Nep-

stad et al., 1999).

A degraded or modified forest may also be classified as

a secondary forest. Tropical secondary forests are

excluded from many forest assessments and conservation

plans despite the fact that they constitute approximately

40% of tropical forest cover (Brown & Lugo, 1990).

Conservation and management of these forests are crucial

since they often provide valuable resources to human

communities, retain significant amounts of biodiversity

and may relieve pressure on primary forests (Cadotte et

al., 2002). Sustainable management of tropical secondary

forests will require more scientific knowledge and a better

understanding of human impact on these forests (Brown &

Lugo, 1990; Moran et al., 1996).

Multi-spectral satellite images available at high spatial

and temporal resolutions can provide a useful means for

monitoring and assessing forest condition, forest modifica-

tion and dtop downT secondary forest formation (i.e., the

conversion of old growth forest to secondary forest through

continual degradation processes). A key step towards using

remotely sensed images for this purpose is to determine the

relationship between spectral information contained within

an image and forest structural properties that are indicative

of forest condition. The spectral response of a forest is

determined by the structure of the canopy through its

relationships with leaf area index or canopy cover (Danson,

1995), which controls the amount of understory vegetation,

leaf litter and soil that are visible to the sensor (Franklin,

1986). The spectral response is indirectly determined by

features that shape the structure of the canopy such as

biomass, age, density, mean tree height and basal area (Lee

& Nakane, 1996; Peterson et al., 1987; Rock et al., 1986).

Many of these features, such as basal area and stem density,

are also indicators of forest condition. For example, basal

area and density of large stems has been shown to be higher

in protected areas and old growth forests and tend to

decrease with increasing levels of disturbance (Bhat et al.,

2000; Bhuyan et al., 2002; Chittibabu & Parthasarathy,

2000; Macedo & Anderson, 1993). Reduction in basal area

or tree biomass due to human disturbance, such as selective

logging, may be attributed to a preference for trees of larger

size classes for construction purposes (Medley, 1993;

Vermeulen, 1996), although these patterns may vary across
sites. Similarly, most tropical secondary forests are charac-

terized as having a high density of trees b10 cm diameter at

breast height (dbh), short trees with small diameters, low

overall basal area and a high leaf area index (Brown &

Lugo, 1990). The distinct structural characteristics of

disturbed and secondary forests and the correlative relation-

ships with canopy reflectance support the utility of remote

sensing as a useful tool for assessing forest condition and

forest disturbances, which are often patchily distributed

across a landscape both spatially and temporally (Cannon et

al., 1994).

Multiple studies have compared the application of differ-

ent satellite sensors for monitoring forest structural features

(Brockhaus & Khorram, 1992; Hyyppa et al., 2000; Lefsky

et al., 2001). These studies have shown that the Landsat

Thematic Mapper (TM) provides comparable and, in some

cases, stronger predictions of certain forest structural

features, such as basal area, when compared to radar satellite

systems (Hyyppa et al., 2000; Lefsky et al., 2001) or other

optical sensors of similar spectral and spatial resolution

(Brockhaus & Khorram, 1992). The Landsat data have clear

practical advantages over the spectrally comparable SPOT

imagery, which include lower costs (Hyyppa et al., 2000). In

comparison to hyperspectral or hyperspatial resolution

sensors, the Landsat data are less expensive, have lower

storage requirements, higher spatial coverage and compara-

tive ease of processing, which is aided by a substantial body

of published literature concerning Landsat image processing

methods. Due to the strong results derived from Landsat

imagery for monitoring forest structural features as shown in

previous studies combined with the practical advantages of

the sensor, this research utilized Landsat ETM+ imagery for

the assessment of tropical forest basal area and stem density

in southeastern Madagascar. The practical advantages of a

sensor are especially important to consider when determin-

ing suitable imagery to use for research or monitoring in

developing countries where a high percentage of tropical

forests are located and where resources for conservation and

environmental management are often limited.

Previous studies have found significant relationships

among spectral information within Landsat TM or ETM+

imagery and variables such as forest age, successional

status, basal area, height, biomass, density and volume

(Brockhaus & Khorram, 1992; Foody et al., 2001, 2003;

Jakubauskas, 1996; Olsson, 1994; Puhr & Donoghue, 2000;

Steininger, 2000). Research on remote sensing of tropical

forest attributes has indicated that the optimal spectral bands

for estimating forest structural features may vary across

studies and across sites within the same study (Foody et al.,

2001, 2003; Steininger, 2000). These issues are at the crux

of a central problem in remote sensing applications, which is

the inability to generalize across studies in both space and

time (Woodcock et al., 2001).

To overcome these obstacles, more knowledge is

needed on the relationships among spectral response and

forest structural characteristics at different sites. Addition-
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ally, there is a need to apply and test similar method-

ologies so as to increase comparability of results from

separate investigations.

Various methods exist for utilizing and analyzing spectral

information to assess vegetation or forest structural param-

eters. One widely used approach is to combine spectral

information from multiple bands into a composite value

known as a spectral vegetation index (Cohen & Goward,

2004). Of the many vegetation indices that exist, the

Normalised Difference Vegetation Index (NDVI) is among

the most common in remote sensing studies and provides an

estimate of vegetation greenness or biomass per pixel

(Goward et al., 1985). However, several factors limit the

applications of NDVI in tropical forest studies. One

limitation of the NDVI is that vegetation greenness within

a pixel saturates at a threshold level, beyond which NDVI

values are insensitive to increasing vegetation amount

(Ripple, 1985). Furthermore, NDVI provides measures of

vegetation greenness and soil reflectance, which may be

more sensitive to topographic variation than to actual soil or

vegetation properties (Cohen & Goward, 2004). An addi-

tional disadvantage of using the NDVI alone is that it

utilizes a limited amount of the total spectral information

available within an image (Foody et al., 2001). Methods that

integrate a broader range of spectral data may provide more

information on vegetation cover than possible with the use

of a single vegetation index.

The statistical analyses used for understanding the

relationships among spectral data and forest attributes

should accommodate for the possibility that these relation-

ships may be non-linear and complex. Regression and

correlation analyses have commonly been used within

remote sensing studies (Jensen et al., 1999; Lawrence &

Ripple, 1998). However, these approaches typically assume

linear relationships among variables of interest while plant

biophysical characteristics often do not conform to these

criteria (Jensen et al., 1999). For this reason, nonparametric

statistical methods may be more useful for describing the

relationship between remotely sensed imagery and environ-

mental variables since these tests make no a priori

assumptions about the data. An artificial neural network

(ANN) offers a powerful method for analysing complex

relationships among variables without making assumptions

about the data. ANNs are capable of handling non-normal-

ity, nonlinearity and collinearity in a system (Haykin, 1994).

This capability is a major advantage of ANNs for assessing

the relationships between forest structural attributes and

spectral reflectance values, which are frequently non-linear

and complex and, in turn, may vary across the different

wavebands.

An ANN is defined by an assemblage of bneurons,Q a
protocol for the way the neurons are networked, organized,

weighted and connected, and a learning rule (Baret, 1995).

An ANN is typically composed of an input layer, one output

layer and one or more hidden layers (Jensen et al., 1999).

The system dlearnsT by predicting output data from patterns
learned from a set of input training data (Pearson et al.,

2002). By comparing the current output layer to a desired

output response, the difference between the two can be

obtained and used to adjust weights within the network. The

goal is to achieve a set of weights that produce results that

closely resemble the target output. This adaptive learning

process is repeated until the difference between predicted

and training values drop below a predetermined threshold of

user-defined accuracy (Jensen et al., 1999). Once con-

structed and after patterns in the data have been learned, the

ANN can be used to estimate or predict values for similar

but unexperienced instances of the data (Carvalho, 2001).

ANNs have recently been shown to provide useful

alternatives to traditional statistical analyses in forest remote

sensing research. Jensen et al. (1999) observed stronger

relationships among the age of coniferous forests in Brazil

and spectral data from bands 3,4 and 5 of the Landsat TM

when using artificial neural networks versus multiple

regression. They suggest that this reflects the ability of

ANNs to handle collinearity among the spectral bands,

which may degrade the predictive power of the multiple

regression. ANNs have also been shown to provide stronger

relationships between actual and predicted estimates of

biomass when using ground data and Landsat TM data of

moist tropical forests in Brazil, Malaysia and Thailand when

compared to predictions derived from multiple regression or

vegetation indices (Foody et al., 2003). In a comparison of

the predictive power of neural networks to multiple

vegetation indices, including NDVI, Foody et al. (2001)

found that the neural networks provided the strongest

relationship between predicted and actual estimates of

above ground biomass (derived from dbh, basal area and

tree height) using the 6 non-thermal bands of the Landsat

TM in a tropical rain forest in Borneo.

In this study, we used Landsat ETM+ imagery to assess

structural attributes of coastal forests in southeast Mada-

gascar. Madagascar is one of the world’s foremost bio-

diversity hotspots due to its combination of exceptional

amounts of endemic species and high estimates of forest

loss (Myers et al., 2000). The island’s forests are also

important for human livelihoods since approximately 80%

of the island’s population is rural and villagers are often

largely dependent upon forests for ecosystem services and

resources such as fuel wood and construction materials

(Shyamsundar & Kramer, 1997; World Bank, 2003).

Despite considerable research on the clearance and extent

of Madagascar’s rain forests (Green & Sussman, 1990;

Mayaux et al., 2000; Nelson & Horning, 1993), there has

been surprisingly little research on the application of remote

sensing for estimating forest structural features on the

island. An initial assessment of the utility of remote sensing

data for estimating forest structure in Madagascar is a

necessary first step towards developing a program for

monitoring forest degradation. Thus, the aims of this study

are (i) to assess the utility of using remotely sensed data

from the Landsat ETM+ for the assessment of forest
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structural features in southeast Madagascar, (ii) to assess

patterns in forest structure at a landscape scale and (iii) to

determine if remote sensing can provide a useful quantita-

tive alternative to commonly used semi-quantitative surveys

of forest condition. In this study, basal area and stem density

are the primary structural features assessed because they

have been shown to be useful indicators of forest

disturbance (Bhat et al., 2000; Bhuyan et al., 2002;

Chittibabu & Parthasarathy, 2000; Macedo & Anderson,

1993) and because basal area can be directly related to

biomass and collected with relative ease (Salvador, 2000).
2. Methods

2.1. Site description

The study site is comprised of approximately 2800 ha of

tropical littoral rain forest in southeastern Madagascar and is

distributed across three sites: Ste. Luce, Mandena and

Petriky (Fig. 1). The forests of St. Luce and Mandena exist

as a mosaic of littoral forest fragments while Petriky, the

southernmost of the three forests, exists predominately as

one large littoral forest parcel. These forests are the last

intact vestiges of littoral forest located on sand and have

been characterized as floristically and structurally distinct

from other similar forests in the region due to their low

height and low dbh values (Dumetz, 1999). The three forests

have been classified as a subtype of rain forest within a

broader class of regional lowland rain forest, which,

collectively, are among the world’s most biodiverse forest

regions for plants due to high tree species richness and a

high proportion of endemics (Dumetz, 1999). There is a

distinct climatic gradient from north to south, with

conditions becoming drier and hotter to the south (Goodman

et al., 1997). The wet season occurs from November to May

with annual average rainfall amounts averaging 2400 mm in

Mandena and Ste. Luce and 1200 mm in Petriky (QMM,

2001). The forests are located at elevations less than 50 m

and comprise a relatively narrow band of coastal plain and

adjacent foothills averaging approximately 7 km in width

and extending from 24835VS to 25808VS latitude (Lewis

Environmental Consultants, 1992).

The forests in the three areas are used by local people for

subsistence purposes, which include fuel wood, construction

materials, food and medicine. Due to long-term human

pressure, the forests are considered as degraded or secon-

dary forests. The future persistence of the forests is under

pressure not only from local use but also from the potential

establishment of a large mining operation, which will

progressively exploit each of the three forest blocks for

ilmenite deposits.

These forests have been mapped and preclassified by

degradation level as determined from a semi-quantitative

ground assessment of canopy closure conducted from 1999

to 2001 as part of an Environmental Impact Assessment of
mining in the region (QMM, 2001, Fig. 1). Forest stands

were classified as belonging to one of five classes of forest

condition: very good condition, good condition, moderate

degradation, strong degradation, extreme degradation. Clas-

sification was based on percent canopy cover as determined

from visual assessments made by at least two observers

walking transect(s) throughout forest parcels. If a forest

block possessed a high degree of heterogeneity in canopy

closure, then more than one class could be assigned to a

single stand. This classification system was reviewed by

Missouri Botanical Gardens, Royal Botanic Gardens Kew

and the Centre National de Recherche Appliquée au

Développement Rural (FOFIA) in Madagascar and was

deemed valid for the assessment and mapping of canopy

degradation in littoral forests (Lowry et al., 1999). However,

the reviewers noted that an investigation into the use of

canopy degradation as a proxy for overall levels of littoral

forest disturbance was needed. The reviewers also suggested

that a quantitative study in selected parcels representing

each of the forest condition classes be undertaken to provide

information on patterns of forest degradation, such as the

spatial correlation of tree cutting to villages, roads and paths

(Lowry et al., 1999). Forest resource use may intensify

differentially across the landscape when the mining pro-

ceeds as there would be progressively less forest available to

local people. Thus, because such pressure will directly

impact biodiversity and resource needs of local commun-

ities, it is important to identify and map patterns in forest

structure before widespread land use change begins.

2.2. Field surveys

In November 2001, twenty-one belt transects were

surveyed in the three study sites. Samples were taken

within six forest stands belonging to four of the five

different degradation classes (2 strongly degraded, 2

moderately degraded, 1 in good condition, 1 in very good

condition). The more degraded stands were smaller in size

and, for this reason, two stands were sampled within the

strongly degraded and moderately degraded classes. No

samples were collected in the extreme degradation class

since there was often no intact forest at these sites. Each

transect was 100 m by 4m and the site of each transect was

randomly selected within each stand and sited at least 100 m

from the forest edge when stand size permitted. The cardinal

direction of each transect was randomly selected unless the

selected direction of the transect would extend the transect

into a land cover type other than forest (i.e., swamp or

matrix). At each site, geographic coordinates were recorded

with a Geographical Positioning System (GPS) allowing

geo-referencing to the satellite data. Within each transect, all

trees with a dbh (dbh taken at 1.3 m from the forest floor) N5

cm within the 4 m by 100 m transect were identified and the

dbh recorded. Where there was more than one stem, all

stems N5 cm dbh were recorded, enabling basal area and

stem density to be calculated.



Fig. 1. The map of forest condition created by QMM of the three study sites, St. Luce, Mandena and Petriky, derived from the ground-based semi-quantitative assessment technique. The shades of black and grey

represent different classes of forest condition: black represents forest in very good condition, dark grey represents forest in good condition, grey represents forest of moderate degradation, light grey represents

forests of strong degradation and very light grey represents areas of extreme degradation. Map adapted by A. Allen (2004) from a map provided by Rio Tinto Iron and Titanium (personal communication, Martin

Theberge, 2003).
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An earlier field campaign was conducted in the region

during July 2000 and measurements of stem density and

dbh within 23 transects were collected. This data set was

used to test the predictive power of the neural networks

when trained with the ground data collected in 2001.

However, the 18-month time lag between the collection

of the 2000 test data and satellite image acquisition in

January 2002 is less than ideal since these forests are

used daily by local people and, thus, there could easily

have been significant change in the forest structure in the

interim. This is a problem characteristic of many remote

sensing studies in which it is often difficult to obtain

appropriate satellite imagery and ground data from

identical time periods (Foody & Curran, 1994). Seven

points were removed from the data set because signifi-

cant forest change had occurred at these sites as indicated

by ground observations, visual analysis of aerial photog-

raphy of the study region taken in December 2000 and a

comparison of Landsat TM satellite images of the area

from November 1999 and January 2002. Thus, the final

set of testing data was comprised of 16 samples. The

2000 field data were collected using a variable area

transect (VAT) which is a rapid assessment method for

measuring forest structure (Askew, 2001). Transect width

was identical to the field surveys conducted in 2001,

although the length of the VAT varied as a function of

the amount of trees counted within each of three size

classes (5–10 cm dbh, 10–15 cm dbh, and N15 cm dbh).

The length of the transect terminated when the quota of

forty trees of each of three size classes had been filled or

when the length of the transect reached 100 m. These

transects were located in 6 forest stands (5 in Mandena

and 1 in St. Luce) and were selected to represent the five

different forest condition classes (2 stands were necessary

to obtain an adequate number of samples within the

extreme degradation class). The forest stands selected in

the 2000 survey were based on classifications of forest

condition made in 1998 and were derived using the same

semi-quantitative assessment method (QMM, 1998).

Transects within each stand were carefully sited so as

to reflect the overall classification status of the forest

stand.

To determine the compatibility between the measure-

ments of total basal area/m2 and stem density derived from

the different methods, the ground data collected in 2001

were transformed into the VAT data format. This trans-

formation was done by dividing the data collected in 2001

into the three size classes designated in 2000 and

recalculating the basal area and stem density. The relation-

ship between the estimates of forest structure using the VAT

method of 2000 and the fixed transect method of 2001 was

very strong for basal area (r=0.98, n=21, pb0.01) and strong

for stem density (r=0.79, n=21, pb0.01). Thus, the potential

error associated with the use of these slightly different

methods is negligible for basal area but more of a concern

for stem density.
2.3. Landsat ETM+ data

A Landsat ETM+ scene (path 158, row 077) covering the

study site was obtained for January 2002. Preprocessing

requirements of satellite imagery may include atmospheric,

radiometric, topographic and geometric correction. Atmos-

pheric and radiometric corrections are necessary when

comparing multiple images from different locations or time

periods. However, atmospheric corrections were not per-

formed in this study since single date imagery was used, all

of the sites of interest are located within the same image

(Song et al., 2001), the image was free from cloud cover,

and the topography of the study site is relatively uniform

(Jensen et al., 1999). For the same reasons, it was not

necessary to convert radiance values into reflectance values

(Jensen et al., 1999). The image was received in the UTM/

WGS 84 coordinate system and reprojected to the Oblique

Mercator Hotine projection system using a nearest neigh-

bour resampling method and a polynomial approximation.

The root-mean-square error (RMSE) was 0.058 pixels. Pixel

size was 28.5 m. All transect geographical coordinates were

converted into the Oblique Mercator Hotine projection

system and then located on the image. All of the image

preprocessing and spectral extraction operations were

conducted in Erdas Imagine version 8.4.

The radiance of the red (band 3), near-infrared (NIR)(-

band 4), mid-infrared (MIR) (band 5) and MIR (band 7)

bands and standard deviations (SD) for each band at each

transect site were extracted using a 3�3 pixel window. Each

window was centered on the GPS recorded position of each

transect in order to minimize any potential mislocation

errors (similar to Asner et al., 2002; Foody et al., 2001). An

NDVI image was created from the red and NIR bands and,

in the same manner, the NDVI value and SD of each

window was extracted. Bands 3, 4, 5 and 7 of the Landsat

ETM+ were selected for this study since these bands have

distinct spectral responses to vegetation, soil and litter and

have successfully been used within similar studies to predict

forest structural features such as age and basal area (Jensen

et al., 1999; Steininger, 2000). In band 3 (red), vegetation

appears dark and soils and surface litter appear brighter than

vegetation (Richardson & Wiegand, 1990) due to chlor-

ophyll absorption of red wavelengths. In band 4 (NIR),

vegetation appears bright due to high reflectance and multi-

scattering of photons as a function of the internal structure

of the leaves and the number of layers in the canopy

(Lillesand & Kiefer, 1994) while soils and litter appear

darker (Asner, 1998). The mid-infrared (MIR) bands are less

studied than the red and NIR bands and are commonly

known as the dwater absorption bandsT because water in the

leaf strongly absorbs radiation at these wavelengths, mean-

ing reflectance in these bands is inversely related to the total

water present in the leaf (Lillesand & Kiefer, 1994). The

inclusion of the MIR bands on the Landsat Thematic and

Enhanced Thematic sensors, the first Earth Observing

satellite system to provide data at these wavelengths, has
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enhanced the amount and type of forestry information that

can be derived from satellite imagery (Cohen & Goward,

2004). Steininger (2000) found that the MIR bands were the

most useful Thematic Mapper bands for estimating age and

biomass of Amazonian forests. Nemani et al. (1993) found

that MIR response decreases with increasing canopy

closure. Open canopy sites have a relatively high MIR

response compared to closed canopy sites due to the lower

water content of understory vegetation and bare soil. In turn,

among open canopy stands, sites with understory vegetation

had a lower MIR response compared to those with bare soil

(Nemani et al., 1993). Horler and Ahern (1986) suggested

that the Landsat TM MIR bands are also sensitive to

shadowing and vegetation density, making them useful for

monitoring clear cuts and regeneration. The two MIR bands

on the Landsat TM and ETM+ are band 5 (mid-infrared

centered at 1.65 Am) in which vegetation appears moder-

ately dark while soils and litter appear very bright, and band

7 (mid infrared at 2.22 Am) in which vegetation appears

extremely dark while soils and litter are extremely bright

(Asner et al., 2002).

The standard deviation of the spectral response of each

band can provide a textural assessment of canopy structure

(Hudak & Wessman, 1998). Canopy roughness is known to

increase with the age and/or successional status of a forest

(Whitmore, 1990) as a canopy changes from a homogenous

canopy of a few light loving pioneers to a more diverse,

uneven canopy composed of many mature, slow growing

species of various ages (Swaine & Hall, 1983). Mature

forests have natural intercrown shadowing and treefall gaps

that give rise to background reflectance and textural values

(Asner et al., 2002).

2.4. Statistical analyses

2.4.1. Correlation analyses

Preliminary analyses of the structural, spectral reflec-

tance and NDVI data were conducted within the SPSS

statistical package using descriptive statistics and corre-

lation analyses. A Kolmogorov–Smirnov test was con-

ducted to determine the normality of the data (Dytham,

1999). All of the bands and NDVI statistically conformed

to normal distributions, as did the forest structural

parameters of stem density and basal area. However,

the degree of normality was variable, there were potential

outliers in the dataset(s) and the relationships of interest

were likely to be non-linear and complex. Therefore,

Spearman’s rank correlations were used in this analysis

(Catlow, 1993; Zou et al., 2003). Spearman’s tests were

conducted to determine the correlations of the spectral

information in each band with the field data. The data

sets collected in 2000 and 2001 were analysed separately

in order to assess the influence of the time lag and

slightly different ground survey techniques on the

relationships among spectral response and forest structural

features.
2.4.2. Artificial neural networks

Artificial neural networks (ANNs) were used in this

research (i) to determine the relationship of Landsat ETM+

bands 3, 4, 5 and 7 and textural information in those bands

to basal area and stem density and (ii) based on this

relationship, to use the spectral data within the image to

predict structural attributes of pixels comprising littoral

forest where no ground data had been collected. NDVI was

excluded from the ANN analysis because of the weak

correlations observed among NDVI and structural measures.

Multi Layer Perceptrons (MLPs) are the most common type

of ANN used for remote sensing studies (Carvalho, 2001)

and have proved to be effective in comparable studies

(Foody et al., 2001). MLP networks were applied in this

research and were trained with a back propagation learning

principle and one hidden layer. The back propagation

learning principle has been demonstrated in other studies

to be the best learning principle for modelling non-linear

relationships (Jensen et al., 1999). The number of neurons,

also known as processing elements, is data dependent and so

the following general formula was applied:

N ¼ 2iþ 1 ð1Þ

where N is the number of neurons and i is equal to the

number of inputs in the input layer. There were eight

inputs consisting of the spectral response values for each

of the four spectral bands and the SD values of each

band. The desired output was either the basal area or stem

density. These structural parameters were tested separately

in relation to the spectral information but the same

architecture was used for each network: one input layer,

one hidden layer and one output layer. For all of the

networks created, a sigmoid axon transfer function, which

is a non-linear transfer function, was used with a

momentum learning rule, a step size of 1.00 and a

momentum set to 0.700. It is recommended to standardize

input variables to values between 0 and 1 (Jensen et al.,

1999; Lloyd, 1996) so the data were standardized using

the formula:

SV ¼ R�minð Þ= max�minð Þ ð2Þ

where SV is the standardized value, R is the real value,

min is the minimum value in the training data and max is

the maximum value of the training data.

Two different approaches were used for testing the

relationship between spectral response and forest structure

within the neural networks, although the network architec-

ture and structure was identical for both approaches.

2.4.2.1. The ANN using ground data from 2001 and 2000:

the 2001/2000 ANN. In the 2001/2000 ANN, the 21

transects collected in November of 2001 were used as the

training data and the 16 transects collected in July of 2000

were used as the testing data. After creating and training the

network, the model was tested and actual measures of basal

area and stem density were plotted against the values for



Table 1

Spearman’s rank correlation coefficients for bands 3, 4, 5 and 7 and NDVI

from January 2002 Landsat ETM+ image with ground measurements of

stem density and basal area collected in November 2001 (n=21) and July

2000 (n=16)

2001 Ground data n=21 2000 Ground data n=16

Stem density Basal area Stem density Basal area

Red (band 3) �0.21 �0.61** 0.34 �0.55*

NIR (band 4) �0.27 �0.66** 0.08 �0.67**

MIR(band 5) �0.33 �0.77** 0.39 �0.54*

MIR (band 7) �0.37 �0.76** 0.41 �0.45

NDVI �0.09 0.14 �0.69** �0.26

* Correlation is significant at the 0.05 level.

** Correlation is significant at the 0.01 level.
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each feature as predicted by the network for each transect

site. The predictive power of the model was tested using a

linear regression and a Bland–Altman test (Bland & Altman,

1986). The linear regression gives information on the extent

to which the results of two methods are related while the

Bland–Altman test examines whether values derived from

two methods agree sufficiently as to be used interchange-

ably. In this case, we compared the values of basal area

derived from two methods: (i) the remote sensing combined

with the ANN and (ii) the field surveys. Using a Bland–

Altman test, the lack of agreement between two methods

can be summarized by calculating the bias, or the mean

difference between methods, and the standard deviation of

the differences using the equation:

LA ¼ dF2SD ð3Þ

where d is the mean difference, SD is the standard deviation

of the differences and LA represents the upper and lower

limits of agreement. The degree of difference deemed

suitable to permit the substitution of one method for another

must be judged by the researcher and will depend on the

specific applications of the method.

2.4.2.2. The ANN using the 2001 ground data: 2001

Jackknife ANN. Due to concern over (a) the possibility

of structural change between the collection of the

validation data in July 2000 and acquisition of the satellite

image in January 2002 and (b) potential error associated

with differences in the ground survey methodologies, a

jackknifing technique was also used to test the predictive

power of the network. This analysis utilized only the

ground data collected in November 2001. In this

approach, all but one of the 21 transects from 2001 were

used as training data and the excluded transect was used

as the testing data. This process was repeated 21 times so

that all values of stem density and basal area were used as

testing data once, which produced a predicted value of

stem density and basal area for each of the 21 transects.

The relationship between predicted and actual values of

stem density/ basal area were assessed using a linear

regression and the Bland–Altman test.

2.5. Predictive map of basal area

The littoral forests were isolated from other vegetation

types by creating a littoral forest mask developed from

previous land cover classifications of the region. Using the

basal area data set collected from the field survey conducted

in 2001 as the training data, the neural network was used to

predict the basal area for all unsurveyed littoral forest pixels

from the spectral information in bands 3, 4, 5 and 7. The

predictions of basal area made by the neural network were

spatially displayed across the littoral landscape. The

resultant predictive map of basal area was compared to

the map of forest condition derived from the semi-

quantitative ground survey.
3. Results

3.1. Relationship of forest structure to spectral reflectance

values using correlation analyses

The results showed that the 2001 ground data were

strongly and significantly correlated with spectral response

in all wavebands while the relationships varied in strength

and significance when using the ground data collected in

2000 (Table 1). The correlations among basal area

measured in 2001 and spectral values were (in decreasing

order of strength) MIR band 5 (r=�0.77, pb0.01), MIR

band 7 (r=�0.76, pb0.01), NIR band 4 (r=�0.66,

pb0.01) and the red band 3 (r=�0.61, pb0.01). The basal

area measurements from the data collected in 2000 were

most strongly and significantly correlated with the NIR

band 4 (r=�0.67, pb0.01), followed by reasonable and

significant relationships for the red band (r=�0.55,

pb0.05) and MIR band 5 (r=�0.54, pb0.05). The

relationship between basal area from the year 2000 data

and MIR band 7 (r=�0.45, pN0.05) was not strong or

significant. In all cases, the correlation between basal area

and the spectral response was negative. NDVI was not

strongly or significantly correlated to basal area in either

of the data sets.

Stem density was not strongly related to spectral

response in any of the individual bands and demonstrated

widely divergent relationships with NDVI between the two

data sets. Stem density from the 2000 data was strongly and

significantly related to NDVI (r=�0.69, pb0.01) but there

was no strong or significant relationship between the 2001

stem density data and NDVI (r=�0.09, pN0.05). To test if

the difference in the relationship between the two data sets

was due to the different ground survey methods, the 2001

data were transformed into the VAT format and then

reanalysed with a Spearman’s test in relation to NDVI.

The results showed no improvement in the strength of the

relationship (r=0.03, pN0.05) suggesting that the methodo-

logical difference does not account for the variability in the

correlations between the two years of ground data. A plot of

the negative relationship between NDVI and stem density

measurements from the year 2000 revealed a trend in which
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against stem density measures collected in the year 2000 survey. (b) NDVI

plotted against stem density measures collected in the year 2001 survey.

J.C. Ingram et al. / Remote Sensing of Environment 94 (2005) 491–507 499
very high values of NDVI were tightly clustered at sites of

low stem density and scattered values of NDVI were

observed at sites of mid to high stem density (Fig. 2a). A

comparison with the stem density data collected during the

2001 survey showed less stratification in stem density and

NDVI values (Fig. 2b).

3.2. Results from the artificial neural networks

3.2.1. The 2001 Jackknife ANN

The 2001 Jackknife ANN produced stronger predictions

for basal area than for stem density. The relationship

between actual and predicted values of stem density was

weak and insignificant (r=0.02, n=21, pN0.05). The values

of basal area predicted by the 2001 Jackknife ANN were

strongly and significantly related to actual measurements of

basal area (r=0.79, n=21, pb0.01; Fig. 3a). The regression

line for this method was closely aligned with the 1:1 line.

The results of the Bland–Altman test (Fig. 3b) revealed that

the mean difference between the actual measures and

predicted measures of basal area was low, at �0.25. The

upper limit of agreement was 9.41 and the lower limit of
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agreement was �9.90. All of the measurements occur

within 2 SD of the mean difference.

3.2.2. The 2001/2000 ANN

The 2001/2000 ANN proved to be more powerful for

predicting basal area than for predicting stem density. The

relationship between predictions of stem density and actual

values of stem density was weak and insignificant (r=0.04,

n=16, pN0.05). The 2001/2000 ANN produced a strong and

significant relationship between actual and predicted values

of basal area (r=0.69, n=16, pb0.01). There was one outlier

for which the predicted values of basal area produced by the

2001/2000 ANN were considerably lower than the actual

measure of basal area. A plot of the residuals identified this

as an outlier, having a residual value greater than two

standard deviations from the mean residual value. It is likely

that this low prediction could be due to tree removal, which

has occurred at this transect since the ground data were

collected in July of 2000 and which was not detectable in

the visual comparison of aerial photography from December

2000 and satellite imagery from 2002 and 1999. This

sampling station was located in a forest fragment that is

close to the main village in St. Luce (S9) and is frequently

accessed by villagers for resources. Once this outlier was

removed, the relationship improved (r=0.82, n=15, pb0.01;

Fig. 3c). A comparison of the regression line with the 1:1

line demonstrates that, although the relationship is strong

between predicted and actual values of basal area, the

relationship substantially deviates from an exact relation-

ship. This is shown in Fig. 3d through the results of the

Bland–Altman test: the mean difference between actual and

predicted measures of basal area/m2 was 1.11. The upper

limit of agreement was 13.78 and the lower limit of

agreement was �11.56. The 15 data points fell within these

limits, which represent a 2 SD envelope around the mean

difference.

3.2.3. Textural information

The contribution of textural values to basal area

predictions was tested by running each network, the 2001/

2000 ANN and the 2001 Jackknife ANN, with the radiance

values within each band but without the textural informa-

tion. The relationship between predicted and actual basal

area did not change significantly when the textural data

were removed from the input data within either the 2001/

2000 ANN (r=0.82, n=15, pb0.01) or the 2001 Jackknife

ANN (r=0.78, n=21, pb0.01).

3.2.4. The predictive map of basal area

The predictive map of basal area (Fig. 4) portrays

climatic influences on forest structure and trends in basal

area that appear to be associated with human access and

distance from forest edge. The model predicts Petriky to

have an overall low basal area when compared to St. Luce.

Within each forest site, where climate and other physical

conditions are generally uniform, distinctive trends of basal
area that appear to be linked to human access and distance

from forest edge can be observed.

In Petriky, pixels predicted to have the highest basal area

occur within the middle of the forest fragment. Although

these high predictions of basal area occur within pixels

proximate to the road, they were at a maximal distance from

the three villages located on the periphery of the forest.

A high degree of heterogeneity in the basal area

predictions across the Mandena site. Two fragments,

M15 and M16, have been designated by the mining

company as conservation zones and were predicted to have

a relatively high basal area when compared to the other

forest stands in the site. Forest fragments that lie proximate

to roads, such as M13 and M3, are predicted to have very

low basal area. These predictions of low basal area have

been confirmed by ground observations within these forest

parcels (JCI, the author’s observations). In comparison,

fragments M4, M5, M6 and M7, which are set slightly

back from the road and are bordered by a river on the

northern boundaries of the fragments, were predicted to

have more inter-stand heterogeneity in basal area values

and a higher abundance of high basal area pixels when

compared to unprotected fragments within Mandena. The

pixels predicted to have the lowest basal area within M4,

M5, M6 and M7 fragments were located predominantly

along the edge of these fragments. Multiple pixels across

the Mandena site were predicted to have very high basal

area values (N20 cm/m2), notably in the area between

stands M15 and M16. However, ground observations have

revealed that most of these areas are wetland-like forest

habitats (JCI and TD, authors’ observations). These

swampy areas are characterized by a high abundance of

palm-like trees, with large leaves, which may have a

spectral signal similar to dense vegetation.

In St. Luce, there is one main road that passes by the

three surveyed forest parcels (S9, S8 and S7). Three villages

are located towards the end of this road, one of which is

extremely close to the forest stand of S9. The forest pixels

located closest to this village were predicted to have a

relatively lower basal area than pixels at greater distances

from the village and the road, most likely due to the ease of

access at these locations. The core areas of the forest parcels

were generally comprised of pixels with higher predicted

values of basal area. Within the three larger fragments, S9

and S6/S7 (which is bisected by a stream into S6 and S7),

there was a higher overall basal area when compared to the

smaller fragments such as S8 and other forest stands

included in the region.
4. Discussion

The relationships among spectral values and basal area

derived from the correlation analyses and those between

predicted and actual measures of basal area derived from the

ANNs demonstrate that the selected wavebands from the
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Landsat ETM+ are useful for estimating forest basal area for

the study site. The correlation analyses provided descriptive

information on the strength of each band in relation to stem

density and basal area while the ANNs made use of these

relationships to predict basal area across the landscape with

reasonable accuracy. The spatial depiction of basal area

across the landscape displayed climatic impacts on basal

area as well as trends associated with distance from human

population centres and accessibility to forest fragments. The

findings in this study support observations from similar

studies and contribute to the growing body of knowledge on

the application of remote sensing for assessing tropical

forest condition.

4.1. Correlations of NDVI to stem density and basal area

There were inconsistent relationships between stem

density measures and NDVI. The stronger relationship

between the stem density measurements collected in 2000

and NDVI in comparison to the very weak relationship

between stem density measures collected in 2001 and

NDVI could be due to the careful pre-stratification of sites

within each forest fragment during the 2000 field survey.

During the 2000 field survey, each transect site was chosen

to represent the deterioration status of the forest fragment.

In contrast, during the 2001 survey, transect sites were

randomly selected within each fragment in order to assess

the range of internal fragment structural diversity. Because

of the stratification during the 2000 survey, more extreme

differences in stem density among fragments were captured

when compared to the 2001 data on stem density (as seen

in Fig. 2). This stratification of sites and fragments resulted

in an extreme separation between the high and low-to-

moderate stem densities and, thus, NDVI values. NDVI

may be sensitive to detecting extremes in forest condition

(i.e., old growth forest versus highly degraded forest), but

is less able to predict structural values of forests

characterized by moderate condition. The negative relation-

ship observed here is similar to the negative, but weak,

relationship observed by Foody and Curran (1994) using

Landsat TM derived NDVI to tree density in a West

African tropical forest.

There was no significant relationship between NDVI and

basal area using data from either of the two field campaigns.

Previous studies in tropical forests have also reported weak

and insignificant relationships between Landsat TM-derived

NDVI values and biomass (Foody et al., 2003). The use of

the NDVI is problematic for estimating structural features of

mixed, broad leaf tropical forests because it loses sensitivity

at high vegetation amounts (Foody et al., 1996; Sader,

1989). For this reason, one of the most valuable applications

of the NDVI for tropical forest assessments continues to be

for estimation of vegetation loss through clearance or

detecting extreme differences in forest condition rather than

estimating values of forest structural features or detecting

subtle landscape variations in these features.
4.2. Correlations of spectral response with stem density and

basal area

The lack of strong and significant relationships of

individual bands with stem density is similar to findings

in other studies, which have failed to identify a strong

relationship between stem density and spectral response

(e.g., Puhr & Donoghue, 2000). From these results, stem

density does not seem to be a structural feature that can be

accurately assessed using our methods.

All correlations of the spectral values in the individual

wavebands with basal area were negative. Negative

correlations of TM bands 3, 4, 5 and 7 with forest

structural parameters have also been observed in other

studies investigating canopy spectral reflectance (Jensen et

al., 1999; Steininger, 2000). The negative relationship of

basal area to NIR reflectance is unexpected since green

vegetation reflects strongly in the NIR, which means that

the relationship between NIR reflectance and increasing

LAI of vegetation should be positive. However, the effects

of increasing shadow of the canopy, which may accom-

pany an increase in LAI, will counteract the expected

positive relationships of NIR with measured forest

structural attributes (Danson, 1995). Within the correlation

analyses using the 2001 ground data, reflectance values in

the MIR band 5 and MIR band 7 demonstrated the

strongest relationships with basal area and the weakest

correlations with the red band 3. These findings are

consistent with other studies, which have identified strong

relationships among the MIR region and forest structural

features (Foody et al., 2001; Horler & Ahern, 1986;

Steininger, 2000). Foody et al. (2001) found that the data

acquired in MIR band 5 was the most useful and red band

3 was the least useful for predicting biomass of tropical

rain forests in Borneo using ANNs. Similar to our results,

basal area of Bolivian tropical secondary forests has been

correlated with the following bands in decreasing order of

strength: MIR band 5, MIR band 7, NIR band 4 and red

band 3 (Steininger, 2000). Our study contributes to a

growing body of research that has demonstrated the

usefulness of these bands for discriminating structural

features such as basal area of tropical secondary forests.

The strength of the relationship between basal area

collected in 2000 and spectral response varied from the

correlations observed from the analysis of the 2001 ground

data. The decrease in the strength of the relationship

between basal area and spectral response in MIR band 5,

MIR band 7 and the red band 3 could be due to physical

alterations to the forest vegetation at sites surveyed in 2000

and the sensitivity of these bands to forest change. The MIR

band 5 has been shown to have high sensitivity to canopy

changes during tropical forest succession (Asner et al.,

2002; Steininger, 2000). MIR band 7 has also been strongly

correlated with vegetation condition, forest stand basal area

and height in previous studies in temperate regions (Ahern

et al., 1991; Jakubauskas, 1996; Puhr & Donoghue, 2000)
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and should show a strong contrast between forest canopy

and gaps (Asner et al., 2002). The red band is highly

sensitive to variability across the forest canopy (Foody &

Curran, 1994) and to changes in forest cover associated with

selective logging and regrowth (Asner et al., 2002). Asner et

al. (2002) found that the relationships among Landsat

ETM+ bands 3 and 5 and canopy gap fraction of

Amazonian forests were significantly weakened after 1.5

years, similar to the time lag between the July 2000 ground

survey and the January 2002 satellite image in this study.

Thus, these bands would be expected to be sensitive to any

subtle ground-based changes. The high degree of human

activity in these forests means that it is very plausible that

physical changes to the forest canopy, basal area and/or

height due to the removal or regrowth of trees have occurred

since the ground data were collected in 2000. This would act

to weaken the relationship between ground measures of

basal area and spectral response within these bands.

The NIR band was the only band in which the relation-

ship between spectral response and basal area did not

change significantly when using the ground data collected in

2000. A plot of the NIR values versus basal area measure-

ments from the 2000 survey revealed a tight cluster of

relatively high NIR values at sites with low values of basal

area (Fig. 5). There was a wider variation and scatter among

the lower NIR values at sites where moderate to high basal

area was recorded in 2000. The strength of the relationship

between NIR and basal area measurements collected in the

year 2000 is most likely because NIR response increases in

open stands due to the high reflectance of understory

vegetation and other highly reflective backgrounds (Nemani

et al., 1993). Thus, if there had been growth or succession at

the sites recorded as having low basal area in the year 2000,

NIR reflectance would have increased at these locations due

to an increase in understory vegetation. Such a scenario is

likely since sites with very low basal area would not be

preferred for further cutting and, thus, temporarily, would be

abandoned and left to regenerate. The tight clustering of

these high values at sites with low basal area in comparison

to the scatter of the relatively lower NIR values contributes

to this observed, but unexpected, strong relationship.
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Fig. 5. Near-infrared radiance values plotted against basal area measure-

ments collected in the year 2000 ground survey.
4.3. Neural networks for predicting stem density and basal

area

Although the correlation analyses showed that the

correlations of the MIR bands 5 and 7 with basal area

were very strong and, thus, potentially useful individually

for predictive purposes, the ANN approach was robust

across the two data sets and allowed inclusion of multiple

wavebands also known to provide useful information on

forest structure and, thus, providing more predictive

power than one or two bands used alone. Using a neural

network, the radiance values within the four spectral

bands produced predictions of forest basal area, which

were strongly and significantly correlated with the actual

measures of basal area. The strong and significant

relationships between predicted and actual measures of

basal area using both the 2001/2000 ANN and 2001

Jackknife ANN support the utility of neural networks for

predicting patterns of basal area from the spectral bands

used in this study. However, the two networks did differ

in the prediction tendencies. The predictions of basal area

using the 2001 Jackknife ANN were fairly close to a 1:1

relationship and were consistent in variability with respect

to the field measurements. The 2001/2000 ANN produced

a strong and significant relationship between actual and

predicted measures of basal area but, in contrast to the

2001 Jackknife ANN, the relationship deviated substan-

tially from the 1:1 line as indicated from the results of

the Bland–Altman test. The model derived from the

2001/2000 ANN had a tendency to underpredict values

of basal area at sites with medium to high actual values

of basal area and to overpredict values of basal area at

sites with relatively low actual values of basal area. This

trend can be attributed to changes in basal area since the

data were recorded in July 2000, which would alter the

relationship between actual and predicted estimates of

basal area derived from the 2002 satellite image. The

nature of the model’s systematic error, due largely to

observed physical changes occurring in this forest,

supports the utility of the method. However, the results

from the two ANN models demonstrate the importance of

obtaining a satellite image as close as possible to the date

of the ground survey for more accurate estimations of

basal area.

Remote sensing alone may not be able to produce

exact values of basal area, but when used in combina-

tion with ground data, the bias and limits of agreement

can be calculated to give an indication of the deviation

from a 1:1 agreement and, thus, the error associated

with the predictions. The strong relationship between

actual and predicted values of basal area for both ANNs

demonstrate the usefulness of remote sensing for

assessing patterns in basal area across a landscape and

its potential as a tool for first-order assessments of

forest condition when ground survey data are not

available.
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4.4. Contribution of textural information for predicting

basal area

Textural information appears to be insignificant in this

study since the relationships between predicted and actual

measures of basal area did not change significantly when

textural data were removed from the network. Textural

measures derived from the standard deviation of pixels

within a 3�3 window have been useful for discriminating

heterogeneity in vegetation structure using imagery of

higher spatial resolutions than Landsat TM or ETM+

images (Hudak & Wessman, 1998). The 30-m pixel size

of the Landsat ETM+ image may be too coarse for detecting

subtle differences in basal area or stem density across a

forest fragment. However, textural measures may be useful

at this spatial resolution for assessing more extreme differ-

ences in land cover types (such as forest versus non-forest)

or for assessment of structural differences across less

disturbed, old growth forests where canopy roughness is

at a maximum. The lower, more homogenous canopy of the

forests in these study sites, such as the Petriky forest, make

textural analyses less useful for discriminating variations in

basal area within these forest stands.

4.5. Predictive map of basal area

The map derived from the ANN predictions of basal area

displayed patterns of forest condition comparable to those

presented within the semi-quantitative map, captured inter-

site differences in basal area associated with environmental

variability and portrayed intra-site trends in basal area

associated with human impact. The ANN predictive map

provided finer spatial detail on the heterogeneity of basal

area within a forest fragment and displayed trends in basal

area that were lacking within the semi-quantitative preex-

istent map of forest condition (Fig. 1).

In the absence of humans, spatial patterns of forest basal

area will be determined by environmental variables (Salva-

dor, 2000). The environmental factors that influence tropical

rain forest structure and biomass include soil type, soil

nutrients, climate, disturbance regime and topography (see

Clark & Clark, 2000, for a review). Soil nutrients and

climate are known to vary across the three study sites

(Lewis Environmental Consultants, 1992) and influence

forest basal area. Rainfall decreases progressively from

north to south, which has discernible impacts on Petriky, the

southernmost of the forest sites. Petriky is a drier, more

nutrient-poor zone, similar to a scrub woodland, and for this

reason has been classified as a distinct subtype from St.

Luce and Mandena (Dumetz, 1999). The ANN predictive

map captured these differences, most notably between the

extremes of St. Luce and Petriky, by predicting low basal

area values throughout Petriky and higher basal area values

throughout St. Luce. However, structural differences were

not as evident between Mandena and Petriky. Mandena

represents a transition area amid the two climatic extremes
and it has been extremely impacted by human pressure, such

as charcoal making (QMM, 2001). Thus, basal area and

forest structure at this site may have been shaped by both

anthropogenic factors and environmental factors such as

climate. Additionally, it should be noted that there are fewer

villages within the St. Luce region, which may also

contribute to the higher overall basal area predictions and

ground measurements, when compared to Mandena. The

qualitative classification of forest condition employed by

QMM (Fig. 1) suggests forest structure and condition at

these sites is primarily determined by human impact. In

contrast, the predictive map of basal area produced by the

ANN provides numerical values related to forest condition

and, thus, avoids the use of value laden categorisations (i.e.,

very good condition, good condition, moderate deteriora-

tion, high deterioration, extreme deterioration), which de-

emphasize the role of climate and other environmental

factors in shaping forest structure.

Within each of the three forest sites where environmental

variables are relatively constant, predicted patterns of basal

area appear to be associated with centres of human

population combined with ease of accessibility to the

forests. Changes in forest structure and decreases in basal

area have been observed with distance from human

settlements or roads and represent the impact of human

pressure on forests (Chittibabu & Parthasarathy, 2000;

Medley, 1993; Vermeulen, 1996). In this region, specifi-

cally, degree of stand isolation and human accessibility has

been shown to impact community composition and bio-

diversity of trees and shrubs (Cadotte et al., 2002). The

predictive map of basal area portrayed such trends by

displaying gradients of increasing basal area with increasing

distance away from forest edges, villages and roads. This

trend is especially noticeable in the forest of Petriky, where

the basal area is highest in the middle of the forest parcel, at

a maximal distance from the three villages, but, interest-

ingly, proximate to the road, which bisects the forest parcel.

Deforestation along roads has been observed in other areas

both globally and in Madagascar due to increased ease of

access (Kistler & Spack, 2003), especially when using

mechanized transport for exporting trees from the forest.

However, at this site, all tree removal occurs by the manual

labour of local people, few of whom, if any, have access to

any form of ground transport other than walking. This limits

the distance people can travel while carrying heavy timber.

Additionally, the droadT is a very coarse grained sand path,

which makes walking long distances difficult, especially

during the heat of the day. Such findings underline the fact

that local context is crucial when considering trends in forest

cover and land use (Kull, 2000). The high basal area

predicted for the conservation zones in Mandena, M15 and

M16, are attributed to protection status of the fragments

since the stands were predicted to have the highest overall

basal area values for the site despite their very close

proximity to villages and roads. Within St. Luce and

Mandena, unprotected stands that were bisected by roads
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and located close to villages were predicted by the model to

have lower basal area values when compared to fragments

that were slightly more removed from the road, villages and/

or protected by river or water boundaries. The ANN was

also able to capture edge effects by predicting low basal area

pixels along stand edges. This was especially evident for the

larger parcels comprising S8 in St. Luce. The ability of the

ANN to portray trends of basal area in relation to environ-

mental and anthropogenic factors, known to influence forest

systems from other studies, demonstrates the utility of this

method for broad assessments of forest structural patterns at

a landscape level.

4.6. The application of this method for monitoring forest

condition

The relationship between spectral information and

ground-collected forest structural data can be combined

with other indicators of forest change detectable throughout

a time series of satellite images to monitor forest mod-

ification (Lambin, 1999). The results found in this study

provide a foundation and crucial first step for establishing

such a monitoring program of forest degradation in south-

eastern Madagascar. Such research could provide a useful

supplement to traditional ground-based forest inventories,

which can be expensive and time consuming (Hyyppa et al.,

2000) and are limited in spatial extent. The ability to derive

temporal and spatial generalizations of the relationships

among spectral data and forest structural features awaits

more research (Foody et al., 2003) and should be pursued to

produce a method useful for long-term monitoring.
5. Conclusion

This study has demonstrated the potential for using a

limited amount of ground-collected data and Landsat ETM+

spectral information from bands 3, 4, 5 and 7 for estimating

the basal area of tropical forests in southeastern Madagascar.

The strong and significant relationships between predicted

and actual measurements of basal area derived from ANNs

and the compatibility of the ANN-derived map of basal area

(Fig. 4) with a preexistent map of forest condition (Fig. 1)

support the use of the methods presented here for assess-

ments of basal area across a forest landscape. Future

research should build upon these relationships and inves-

tigate how the predictive relationships between spectral

information and basal area observed here can be generalized

temporally and, thus, incorporated into long term monitor-

ing of forest condition for the region.
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